Distance Measures for Prototype Based Classification

نویسندگان

  • Michael Biehl
  • Barbara Hammer
  • Thomas Villmann
چکیده

The basic concepts of distance based classification are introduced in terms of clear-cut example systems. The classical k-NearestNeigbhor (kNN) classifier serves as the starting point of the discussion. Learning Vector Quantization (LVQ) is introduced, which represents the reference data by a few prototypes. This requires a data driven training process; examples of heuristic and cost function based prescriptions are presented. While the most popular measure of dissimilarity in this context is the Euclidean distance, this choice is frequently made without justification. Alternative distances can yield better performance in practical problems. Several examples are discussed, including more general Minkowski metrics and statistical divergences for the comparison of, e.g., histogram data. Furthermore, the framework of relevance learning in LVQ is presented. There, parameters of adaptive distance measures are optimized in the training phase. A practical application of Matrix Relevance LVQ in the context of tumor classification illustrates the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential evolution based nearest prototype classifier with optimized distance measures for the features in the data sets

In this paper a further generalization of differential evolution based data classification method is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, for determining the optimal values for all free parameters of the classifier model during the...

متن کامل

Optimized distance metrics for differential evolution based nearest prototype classifier

In this article, we introduce a differential evolution based classifier with extension for selecting automatically the applied distance measure from a predefined pool of alternative distances measures to suit optimally for classifying the particular data set at hand. The proposed method extends the earlier differential evolution based nearest prototype classifier by extending the optimization p...

متن کامل

Beyond Standard Metrics - On the Selection and Combination of Distance Metrics for an Improved Classification of Hyperspectral Data

Training and application of prototype based learning approaches such as Learning Vector Quantization, Radial Basis Function networks, and Supervised Neural Gas require the use of distance metrics to measure the similarities between feature vectors as well as class prototypes. While the Euclidean distance is used in many cases, the highly correlated features within the hyperspectral representati...

متن کامل

Probabilistic Distance Measures for Prototype-based Rules

Probabilistic distance functions, including several variants of value difference metrics, minimum risk metric and ShortFukunaga metrics, are used with prototype-based rules (P-rules) to provide a very concise and comprehensible classification model. Application of probabilistic metrics to nominal or discrete features is straightforward. Heterogeneous metrics that handle continuous attributes wi...

متن کامل

A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators

Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013